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Phase transitions for rock-scissors-paper game on different networks
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Monte Carlo simulations and dynamical mean-field approximations are performed to study the phase tran-
sitions in the rock-scissors-paper game on different host networks. These graphs are originated from lattices by
introducing quenched and annealed randomness simultaneously. In the resulting phase diagrams three different
stationary states are identified for all structures. The comparison of results on different networks suggests that
the value of the clustering coefficient plays an irrelevant role in the emergence of a global oscillating phase.
The critical behavior of phase transitions seems to be universal and can be described by the same exponents.
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Complex networks have recently been studied extensively16,17 and exhibits an unusual response to external pertur-
as these objects pervade all nat{te3]. Initial efforts were  bation[18,19.
focused on the characterization and evolution of these In our previous papefl2] the RSP game was studied on
graphs. Very recently, the investigations were extended téuch regular small-world structures where randomly chosen
critical behavior in dynamical models defined on various(long-range links are substituted for a portio@ of the

random network$4,5]. The effects of the network topology nearest-neighbor links between sites located on a square lat-
on critical transitions can well be investigated on the smalltice. A similar algorithm was proposed by Watts and Strogatz

world networks introduced by Watts and Strog#6j be- [6] as a continuous transition between a lattice and a random

cause this structure provides a transition from a regular la?eWork. For the sake of simplicity, our rewiring proc¢sg]

tice to some random networks. It is shown that modification<£ONServes regularity, i.e., the coordination number of each

in the host topology either change the class of universalit;?'te (called the degrgeremains unchangee=4. Evidently,

: or Q=0 this structure is equivalent to a square lattice; mean-
[7.8] or the long-range connections prevent complete OrOIerWhile the limit Q— 1 results in a regular random graph. It is

ng [9]'dd. . h | h he i ¢ important to note that the restriction of fixed degree does not
In addition, there are examples where the increase of rafsy o6 the small-world feature of the network: the charac-

domness of the host network induces a phase transition {Qgyjstic (averagg path length between two sites scales as the
ward a state that cannot be observed on lattices. To be Spgyyarithm of the network size. Consequently, the main con-
cific, the emergence of an oscillating state has been observe{;sion is expected to be valid also for standard Watts-
by Kuperman and Abramsdi0] at a finite rate of random-  strogatz networks. At the same time, this simplification has
ness in an epidemiological model. The appearance of globalllowed us to compare the results from these quenched struc-
oscillation(synchronizatiopis also observed in some cycli- tures with those obtained from “annealed” structures that can
cally dominated three-state systems, such as the voluntagiso be investigated analytically. For the annealed structures
prisoner’'s dilemma[ll] and rock-scissors-paperdRSP the (long-range links are substituted temporarily with a
gameg12]. For the latter models the amplitude of oscillation probability P for the standardnearest-neighbptinks on the
depends on the randomness, and a second transition maguare lattice. Naturally, in the limP— 1 the dynamics of
occur when the limit cycle approaches the absorbing stateshe system satisfies the mean-field condition. The effect of
The application of annealgtempora) randomness results in  annealed randomness on rumor propagafi21 and for
qualitatively similar behaviors. In this Brief Report, concen-the two-state voter mod¢22] has already been studied.
trating on the RSP game, we extend our previous work by For the RSP model on the quenched structures the emer-
combining both types of randomness to explore the globagence of global oscillation is observeddfexceeds a thresh-
phase diagram and to clarify a universal feature. old value and the amplitude of oscillation tends to a fixed
For the spatial rock-scissors-paper game the individualgalue in the limitQ— 1. Such a transition occurs also for
located on site of a lattice belong to one of the three speciesannealed structures when the valuePfincreases. In the
(§=1,2,3 which dominate each other cyclically. This latter case, however, the amplitude of global oscillation in-
means that the time evolution of this system is governed byreases with time and finally the evolution ends in one of the
the iteration of cyclic invasion processes between two ranhomogeneouabsorbing states if P exceeds a second
domly chosen neighboring sites; namely, the gai2) or  threshold value. The different consequences of the two types
(2,2) becomeg1,1), (2,3) or (3,2 becomes2,2), and finally  of randomness have inspired us to combine these random-
(3,1 or (1,3 evolves to(3,3) with the same rate, defined to nesses when starting from different lattices.
be 1. Starting from a random initial state on a square lattice, Henceforth, both types of randomness are applied to de-
this system evolves into a self-organizing pattern in whichrive a global phase diagram on tReQ plane. To explore the
the three species are present with the same average conceobust(universaj behaviors we also analyze what happens
tration (1/3). This state, maintained by cyclic invasions for other regular structures with degreeszsf3, 4, and 6.
[13-15, provides protection against some types of invaderdhese lattices are Kagom@vhere z=4 as for the square
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FIG. 1. Phase diagram for the RSP game on a network derived FIG. 2. The order parameter as a function®ffor quenched
from the honeycomb lattice. The system exhibits self-organizingnetworks (P=0) derived from cubic(box), square(bullet), and
(9), oscillating (O), and absorbindA) phases. Symbols represent ladder-shapétriangle) lattices. The corresponding critical value of
MC results. The solid lines are guides to the eye. Q where the oscillatory phase emergesQg(P=0)=0.01031),

. . . 0.0671), and 0.21(R), respectively. The curves from left to right in
lattice), honeycoml(z=3), triangle(z=6), cubic(z=6), and  the inset show theb(Q, P=0) functions for small-world networks
ladder-shapez=3) lattices. For the ladder-shape structurederived from cubic, triangular, square, Kagomé, honeycomb, and
two parallel chains are connected by interchain bonds. ladder-shape lattices.

Our analysis is based on systematic Monte Ca&iL)
simulations. First we create a quenched random regula@scillation (phaseO) can be observed on random regular
structure starting from one of the above mentioned latticesgraphs(Q=1, P=0) for z=3 andz=4. On the contrary, the
That is, a portiorP of the nearest-neighbor links are replacedsystem evolution terminates in one of the absorbing states
by randomly chosen links in a way that conserves the regutA) on random regular graphs far6, and similar behavior
larity (for details, seg12]). The MC simulations are started is expected foz>6. In order to illustrate the relevance nf
from a random(uncorrelateyl initial state where the three Fig. 2 shows th& dependence ob for quenched structures
species take their place with the same probabifty3). (P=0) created by the rewiring technique from the above
Keeping this structure fixed the time evolution is governedmentioned lattices.
by invasions between neighbors with a probability L er Evidently, in the limitQ— 1 the quenched structures be-
along a(random long-range link chosen with a probability come independent of the original lattice. Consequently, start-
P. In the simulation the number of lattice points is varieding from either the square or the Kagomé lattice the order
from 10° to 10'. The large sizes are used in the close vicin-paramete(Q, P=0) tends monotonically to the same value
ity of transition points to reduce the undesired effect of fluc-[P,(z=4)=0.9805)] in the limit Q— 1. Forz=3 (triangular
tuations. and ladder-shape latticesve have obtained a lower limit

The main features of the steady-state phase diagramvalue, namely,®,(z=3)=0.7505). For z=6, however, the
which is generally valid for all structures, can be summarizedsystem ends in the phageif Q exceeds a threshold value
as follows. For small values @ andP, the stationary state Q,. According to our simulations on the quenched structures
is characterized by a self-organizing strategy distribution de¢P=0) Q,=0.3788) if the random regular structure is cre-
noted byS. In this self-organizing pattern the strategies al-ated from a cubic lattice an@,=0.40510) for the triangular
ternate cyclically at each site, these local oscillations are nggttice.
synchronized by the short-range interactions, and the average The topological structure of the original lattice affects the
concentrations are the sart/3). For the opposite limit—  value ofQ, because the global oscillation occurs for snall
when both structural paramete@sandP are close to 1—the  for all the investigated lattices. The inset in Fig. 2 demon-
system evolution is characterized by growing spiral trajectostrates clearly that the lowesd; appears for the three-
ries [12], and finally the evolution ends in one of the three dimensional cubic lattice, while the highest value is found
absorbing (homogeneoysstates (A) containing only one for the one-dimensional ladder-shape structures. It is under-
strategy. Evidently, this absorbing phase is threefold degernined that the values d; are very close to each other for all
erate due to the cyclic symmetry. These two ph&SedA)  the small-world structures created from the two-dimensional
are separated by the region of global oscillati@ on the |attices.

P-Q plane. In this oscillating phase the behavior is charac- The present RSP system undergoes two subsequent phase
terized by a limit cycle which is quantified by an order pa-transitions when increasing the randomng3sand/orP) of
rameterd® defined as the ratio of the area of the limit cycle the backgrounds. The first transiticinom S to O) is a Hopf

and area of the full triangle in the ternary phase diagranbifurcation that is well studied by mean-field type ap-
[12]. This order parameter 9(1) in the stateS(A) and var-  proacheg[23]. Notice that the order parametdr vanishes

ies from 0O to 1 for the occurrence of global oscillatigshase linearly for all the structuregsee Fig. 2, in agreement with

O). Figure 1 shows the phase boundaries obtained by M&heory.

simulations forz=3 on theP-Q plane. Our results indicate clearly that the global oscillation

A striking quantitative difference is found in the behavior emerges just above a threshold value of quenched random-
of these systems when varying the valuezafiamely, global ness although the small-world feature characterizes this type
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of network at any small rate of disorder. The same phenom- 1

enon was observed by Kuperman and Abramgl@) when

considering the transition to an oscillating phase in a three- 0.95¢
state(susceptible-infected-refractgrgpidemiological model 09l

where the initial lattice was the traditional one-dimensional e

ring. They have conjectured that the emergence of global 085k

oscillation is related to the variation in the clusterization. In

the present model, however, our results suggest that the clus- 0.8}

tering coefficient(C) cannot play a significant role because

the corresponding values df are very different for the 05001 002 003 004 005
structures studied. We cite as an example the case vhere P

=0 for all initial lattices except the triangle and Kagomé ]

whereC=2/5 and 1/3yespectively. Furthermore, the value  FIG. 3. The order parameter as a functionfbfor the three-

o C anges fom 00004 10 0.3 fordiferent opolgies her 2055 1dor (5 e, Bocs T e s o HC

itrr:ets Bé?tgirg . (;nstﬁgs\,/vlsniﬁ eﬂc])?dglopl)) ggmzfec;llggr;gfupnhca;iso% c-)rfhéorbi.ng state i§>2:0.07Q2). The dashetﬁsollid) line represents the

for all networks studied here. These results suggest@hat Prédiction of the dynamical cluster technique at the levels of the
. ; . 99 .__four- and six-site approximations. Inset shows the shape of four-

depends basically on the dimension of the initial lattice; o oo clusters used in these approximations.

namely, Q;=0.0686) for all networks derived from a two-

dimensional lattice independently of the value of coordina{k=2) gives spiral trajectories reaching the edge of triangles

tion number. On the contrary); is much smaller for the (or the absorbing statgfor arbitrary P. Choosing four- and

graph derived from the cubic lattice and substantially largesix-site clustergsee the inset in Fig.)3this method was

for the network originating from the ladder-shafigracti-  capable of reproducing the appearance of limit cycles below

cally one-dimensionallattice. a threshold value oP. The quantitative predictions of this

The second phase transitigfiom stateO to A) can be method are compared with the MC results in Fig. 3. Obvi-
studied more efficientlyor with a higher accuragyif P~ ously, the increase of cluster size improves the estimation.
rather tharQ is varied, because the limit cycle is affected by Notice that, according to the six-site approximation, the or-
the quenched structural randomness even for laig&his ~ der parameted also tends to 1 Ve(%slowlysee Fig. 4. ‘I;QSE:
discrepancy can be avoided by averaging over many runs dixtrapolated critical values ar®,”=0.0192) and P,
different structures whose creation is very time consuming=0.0674).

For temporary randomnes® > 0), however, the technical ~ The above value of the exponeptagreegwithin statis-
difficulties can be overcome more easily and the numericalical errop with those we observed on the square lattice in
analysis is executable with adequate accuracy. This is theur previous work concentrating only on the effect of an-
reason why henceforth we concentrate on the second phagealed randomness. This coincidence inspired us to study the
transition occurring with the increase Bf robustness of this transition. For this purpose the MC analy-

First we study what happens on random regular graphges of the second transition were carried out on some two-
(limit Q— 1) for z=3 when increasind®. This choice was dimensional latticegsquare, triangle, and honeycomb for
motivated by the simplicity of this treelike structure on Q=0). The results, summarized in Fig. 4, seem to confirm
which the dynamical cluster technique can be applied fothat the transition from the global oscillatigphaseO) to the
sufficiently large clusters. In Fig. 3 the MC results show thatdbsorbing stategA) is universal.
the order parameteb tends very slowly to 1. Despite the
large sizes in simulations we could not study the very close 0.1k
vicinity of the transition point(P,) because of the fluctua-
tions yielding an occasional transition from the noisy limit
cycle to one of the homogeneous statds. Our MC data & K
can be well approximated by a power law behavior, namely, Y 1 B
1-d(P,—P)” with an exponenty=3.34).

For periodic structures the dynamical cluster technique
has proved to be a very efficient method to describe different
phenomena in several nonequilibrium moddlg,24—2§. In 0.001 L s s
the limit N—o the random regular graph becomes locally 0.02 0.04 0.08
treelike, and it can be considered as a Bethe lattice on which

this technique works well tof27]. Using this technique one FIG. 4. Comparison of the continuous transitions to the absorb-
can determine the probability of each configuration occurringng phase for different networks. The MC data are obtained on
on ak-site cluster by solving a suitable set of master equahoneycomhtriangle), squarecrosy, and triangulatbullet) lattices,
tions (details are given ir[12,28). The cluster siz&k is @  and on a random regular graph with a degree=8 (box). Filled
crucial parameter. For one-site clusters this technique igiangle represents the result of dynamical cluster approximation at
equivalent to the mean-field approximation predicting con-six-site level for the same graph. The solid line represents the slope
centric orbits independent & [23]. The pair approximation of 3=3.3.
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To summarize, we have studied the effect of host latticdure in the slow tendency toward the saturation value. It also
randomness on the stationary state for a simple rock-scissorgsrned out that the global oscillation is stali®<1) on
paper system. The quenched and annealed randomness of figanched random regular structures if the number of neigh-
regular background is characterized by two parame@rs s js not larger than @&<4). It would be interesting to see
and P vary;ng fror; O(correspon((jjlng to a Ilatt|ce Wr']th ad?" how the synchronizatiortas well as the above mentioned
mension of 1, or 2, or 8to 1 (random regular graph and/or two transitiony emerges on other random networks. The

mean-field condition This system displays two subsequent Kesci del invol "
transitions if the randomness is increased. A self-organizing"€Sent rock-scissors-paper model involves two crucial fea-

pattern can be observed if these randomness parameters H(€s. On the one hand, the dynamical rule is cyclically sym-
main within a region of the”-Q plane. When crossing the metric; on the other hand, the invasion fronts become very

boundary of this region a global oscillatighmit cycle) oc-  irregular even on two-dimensional lattices because the inva-
curs via a Hopf bifurcation. The transition poiffor P=0)  sion between two neighboring sites is not affected by their
depends strongly on the dimensidrof the original lattice; neighborhood. Further investigations are required to clarify
meanwhile it is hardly affected by the clustering coefficient.what happens if the dynamical rules are not cyclically sym-
For the global oscillation the area of limit cyclas well as  metric and/or the moving interfaces are smoothed by local
the “amplitude’) increases with randomness up to its saturainteractions.

tion value. Thus, above a second threshold v@inere pre-

cisely for P> P,(Q)] the system sooner or later terminates in ~ This work was supported by the Hungarian National Re-
one of the homogeneous absorbing states. Our simulatiorggarch Fund under Grant No. T-47003 and Bolyai Grant No.
indicate that this second transition has also a universal fed€80/0067/00.
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